Structure Reports

Online
ISSN 1600-5368

6-(2,4-Difluorophenyl)-3-(4-methoxyphenyl)-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazine

Li-Xue Zhang,* San-Nu Zhou, An-Jiang Zhang, Xin-Xiang Lei and Chang-Xiu Cai

Department of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail:
zhanglixuelz@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.050$
$w R$ factor $=0.119$
Data-to-parameter ratio $=12.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title compound, $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{OS}$, the thiadiazine ring is non-planar and adopts a half-chair conformation. The crystal packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ intermolecular hydrogen-bonding interactions.

Comment

1,2,4-Triazoles fused with six-membered ring systems are found to possess diverse applications in the fields of medicine, agriculture and industry. The commonly known systems are triazoles fused with pyridine, pyridazine, pyrimidine, pyrazines and triazines. A literature survey reveals that there are not many examples of triazoles fused with thiadiazines. Moreover, a large number of triazolothiazines have been shown to exhibit antimicrobial (Feng et al., 1992) and diuretic (Mohan \& Anjaneyulu, 1987) properties and act as photographic couplers (Holla et al., 2001). On the other hand, much attention has been paid to partially fluorinated heterocyclic compounds, because of their unique chemical, physical and biological properties (Shaaban \& Fuchigami, 2002). The development of efficient methods for selective fluorination of heterocycles is, therefore, of much importance. In this paper, we report the synthesis and crystal structure of the title compound, (I).

(I)

In compound (I), the five-membered triazole ring (N2-N4/ $\mathrm{C} 9, \mathrm{C} 10)$ and the benzene rings ($\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 11-\mathrm{C} 16$) are each essentially planar, while the six-membered thiadiazine ring (N1/N2/C7-C9/S1) is distorted from planarity, with an r.m.s. deviation of $0.251 \AA$ (Fig. 1). In this half-chair conformation, atoms C8 and S1 deviate by -0.401 (2) and $0.330(1) \AA$, respectively, from the plane through atoms $\mathrm{C} 7, \mathrm{~N} 1, \mathrm{~N} 2$ and C 9 . Both the $\mathrm{S}-\mathrm{C}($ mean $1.772 \AA$) and $\mathrm{C}-\mathrm{N}$ bond lengths are comparable with those in related compounds (Sert et al., 2003; Xiang et al., 2004). In the triazole ring, the bond lengths show normal values (Allen et al., 1987; Jin et al., 2004; Table 1). The dihedral angle between the $\mathrm{N} 2-\mathrm{N} 4 / \mathrm{C} 9 / \mathrm{C} 10$ and $\mathrm{C} 11-\mathrm{C} 16$ rings is $17.7(1)^{\circ}$, and that between the $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 11-\mathrm{C} 16$ rings is 13.9 (1) ${ }^{\circ}$. In the crystal structure, weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$

Received 19 October 2005 Accepted 3 November 2005 Online 10 November 2005

Figure 1
The molecular structure of (I), showing the atomic numbering. Displacement ellipsoids are drawn at the 30% probability level.
and $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ intermolecular hydrogen-bonding interactions link the molecules into a two-dimensional network (Table 2).

Experimental

4-Amino-5-mercapto-3-(4-methoxyphenyl)-1,2,4-triazole was prepared from 4-methoxybenzoic acid hydrazide, whose starting material was 4 -methoxybenzoic acid, following the literature method of Zhang et al. (1990). To a solution of 4-amino-5-mercapto-3-(4-methoxyphenyl)-1,2,4-triazole (0.001 mol) in absolute ethanol was added 2-bromo- $2^{\prime}, 4^{\prime}$-difluoroacetophenone (0.001 mol). The mixture was refluxed for 7 h . The solid obtained on cooling was filtered, washed with cold water, dried and recrystallized from ethanol to give compound (I). The purified product was dissolved in 95% ethanol and kept at room temperature for 5 d and colourless single crystals of (I) were formed (m.p. 454-455 K). Spectroscopic analysis: IR (KBr, v, $\left.\mathrm{cm}^{-1}\right): 3055,3001(\mathrm{Ar}-\mathrm{H}), 2922\left(\mathrm{CH}_{2}\right), 1610(\mathrm{C}=\mathrm{N}), 1483,1296$ $(\mathrm{N}-\mathrm{N}=\mathrm{C}), 1176(\mathrm{C}-\mathrm{F}), 834,731$ (di- and trisubstituted benzene), 691 (C-S-C); ${ }^{1} \mathrm{H}$ NMR (dimethylsulfoxide- d_{6}, δ, p.p.m.): 7.86-7.99 $(q, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.50-7.57(t, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.27-7.32(t, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.03-7.13(q, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.34\left(s, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.82\left(s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR (dimethylsulfoxide- d_{6}, p.p.m.): 166.80, 162.70, 159.10, 152.94, 151.62, 148.23, 141.93, 132.26, 129.70, 119.71, 118.31, 112.89, 105.47, 55.48, 25.95. Elemental analysis for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{~N}_{4}$ OS: C 56.53, H 3.56, N 15.92%; calculated: C 56.92 , H 3.38 , N 15.69%.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{OS}$
$M_{r}=358.37$
Monoclinic, $P 2_{1} / c$
$a=12.9203$ (7) £
$b=13.9490$ (11) \AA
$c=8.7609$ (10) \AA
$\beta=92.502$ (1) ${ }^{\circ}$
$V=1577.4(2) \AA^{3}$
$Z=4$

Data collection

[^0]$D_{x}=1.509 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2351
\quad reflections
$\theta=2.7-24.4^{\circ}$
$\mu=0.24 \mathrm{~mm}^{-1}$
$T=298(2) \mathrm{K}$
Block, colourless
$0.30 \times 0.22 \times 0.13 \mathrm{~mm}$
\[

$$
\begin{aligned}
& 2782 \text { independent reflections } \\
& 2387 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.026 \\
& \theta_{\max }=25.0^{\circ} \\
& h=-15 \rightarrow 15 \\
& k=-16 \rightarrow 8 \\
& l=-10 \rightarrow 10
\end{aligned}
$$
\]

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0534 P)^{2}\right. \\
& \quad+0.5462 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.23 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.119$
$S=1.11$
2782 reflections
227 parameters
H -atom parameters constrained

Table 1

Selected bond lengths (\AA).

S1-C9	$1.731(2)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.389(2)$
S1-C8	$1.813(2)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.375(3)$
O1-C14	$1.365(3)$	$\mathrm{N} 2-\mathrm{C} 10$	$1.381(3)$
O1-C17	$1.423(3)$	$\mathrm{N} 3-\mathrm{C} 9$	$1.303(3)$
N1-C7	$1.284(3)$	N3-N4	$1.398(3)$

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.93	2.50	$3.241(3)$	137
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{~F} 2$	0.97	2.44	$2.976(3)$	115
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{~N} 4^{\mathrm{ii}}$	0.97	2.48	$3.394(3)$	156
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{~N} 1$	0.93	2.42	$3.042(3)$	124
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{~F} 1^{\text {iii }}$	0.93	2.54	$3.458(3)$	171
$\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{~N} 4$	0.93	2.54	$2.862(3)$	101

Symmetry codes: (i) $-x+2, y+\frac{1}{2},-z+\frac{3}{2}$; (ii) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (iii) $x, y-1, z$.
All H atoms were positioned geometrically $[\mathrm{C}-\mathrm{H}=0.93$ (aromatic), 0.96 (methyl) and $0.97 \AA$ (methylene)] and allowed to ride on their parent atoms, with $U_{\text {iso }}=1.2-1.5 U_{\text {eq }}$ (parent atom).

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (grant No. M203149).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2002). SMART (Version 5.62), SAINT (Version 6.02), SADABS (Version 2.03) and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Feng, X. M., Chen, R. \& Yang, W. D. (1992). Chem. J. Chin. Univ. 13, 187-194.
Holla, B. S., Akberali, P. M. \& Shivananda, M. K. (2001). Il Farmaco, 56, 919927.

Jin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. \& Shen, L. (2004). Acta Cryst. C60, o642-o643.
Mohan, J. \& Anjaneyulu, G. S. R. (1987). Pol. J. Chem. 61, 547-551.
Sert, S., Ereag, A., Senturk, O. S., Sterenberg, B. T., Udachin, K. A., Ozdemir, U. \& Sarikahya, F. U. (2003). Polugedro, 22, 1689-1693.

Shaaban, M. R. \& Fuchigami, T. (2002). Tetrahedron Lett. 43, 273-276.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Xiang, G.-Q., Zhang, L.-X., Zhang, A.-J., Cai, X.-Q. \& Hu, M.-L. (2004). Acta Cryst. E60, o2249-o2251.
Zhang, L. X., Zhang, Z. Y. \& Zeng, F. L. (1990). Chem. J. Chin. Univ. 11, 148151.

[^0]: Bruker APEX area-detector diffractometer
 φ and ω scans
 Absorption correction: multi-scan (SADABS; Bruker, 2002)
 $T_{\text {min }}=0.931, T_{\text {max }}=0.959$
 8091 measured reflections

